

 Navigation

 	
 index

 	
 next |

 	Sailfish 0.7.6 documentation

Welcome to Sailfish’s documentation!

Contents:

	Requirements

	Installation

	Sailfish
	Indexing

	Quantification

	Description of important options

	References

	Fragment Library Types

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sailfish 0.7.6 documentation

Requirements

	A C++11 conformant compiler (currently tested with GCC>=4.7 and Clang>=3.4)

	CMake [http://www.cmake.org]. Sailfish uses the CMake build system to check, fetch and install
dependencies, and to compile and install Sailfish. CMake is available for all
major platforms (though Sailfish is currently unsupported on Windows.)

Installation

After downloading the Sailfish source distribution and unpacking it, change into the top-level directory:

> cd Sailfish

Then, create and out-of-source build directory and change into it:

> mkdir build
> cd build

Sailfish makes extensive use of Boost [http://www.boost.org]. We recommend installing the most
recent version (1.55) systemwide if possible. If Boost is not installed on your
system, the build process will fetch, compile and install it locally. However,
if you already have a recent version of Boost available on your system, it make
sense to tell the build system to use that.

If you have Boost installed you can tell CMake where to look for it. Likewise,
if you already have Intel’s Threading Building Blocks [http://threadingbuildingblocks.org/] library installed, you can tell CMake
where it is as well. The flags for CMake are as follows:

	-DFETCH_BOOST=TRUE – If you don’t have Boost installed (or have an older
version of it), you can provide the FETCH_BOOST flag instead of the
BOOST_ROOT variable, which will cause CMake to fetch and build Boost locally.

	-DBOOST_ROOT=<boostdir> – Tells CMake where an existing installtion of Boost
resides, and looks for the appropritate version in <boostdir>. This is the
top-level directory where Boost is installed (e.g. /opt/local).

	-DTBB_INSTALL_DIR=<tbbroot> – Tells CMake where an existing installation of
Intel’s TBB is installed (<tbbroot>), and looks for the apropriate headers
and libraries there. This is the top-level directory where TBB is installed
(e.g. /opt/local).

	-DCMAKE_INSTALL_PREFIX=<install_dir> – <install_dir> is the directory to
which you wish Sailfish to be installed. If you don’t specify this option,
it will be installed locally in the top-level directory (i.e. the directory
directly above “build”).

Setting the appropriate flags, you can then run the CMake configure step as
follows:

> cmake [FLAGS] ..

The above command is the cmake configuration step, which should complain if
anything goes wrong. Next, you have to run the build step. Depending on what
libraries need to be fetched and installed, this could take a while
(specifically if the installation needs to install Boost). To start the build,
just run make.

> make

If the build is successful, the appropriate executables and libraries should be
created. There are two points to note about the build process. First, if the
build system is downloading and compiling boost, you may see a large number of
warnings during compilation; these are normal. Second, note that CMake has
colored output by default, and the steps which create or link libraries are
printed in red. This is the color chosen by CMake for linking messages, and
does not denote an error in the build process.

Finally, after everything is built, the libraries and executable can be
installed with:

> make install

To ensure that Sailfish has access to the appropriate libraries you should
ensure that the PATH variabile contains <install_dir>/bin, and that
LD_LIBRARY_PATH (or DYLD_FALLBACK_LIBRARY_PATH on OSX) contains
<install_dir>/lib.

After the paths are set, you can test the installation by running

> make test

This should run a simple test and tell you if it succeeded or not.

 Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sailfish 0.7.6 documentation

Sailfish

Sailfish is a tool for transcript quantification from RNA-seq data. It
requires a set of target transcripts (either from a reference or de-novo
assembly) to quantify. All you need to run sailfish is a fasta file containing
your reference transcripts and a (set of) fasta/fastq file(s) containing your
reads. Sailfish runs in two phases; indexing and quantification. The indexing
step is independent of the reads, and only needs to be run once for a particular
set of reference transcripts and choice of k (the k-mer size). The
quantification step, obviously, is specific to the set of RNA-seq reads and is
thus run more frequently.

Indexing

To generate the sailfish index for your reference set of transcripts, you
should run the following command:

> sailfish index -t <ref_transcripts> -o <out_dir> -k <kmer_len>

This will build a sailfish index using k-mers of length <kmer_len> for the
reference transcripts provided in the file <ref_transcripts> and place the
index under the directory <out_dir>. There are additional options that can
be passed to the sailfish indexer (e.g. the number of threads to use). These
can be seen by executing the command sailfish index -h.

Note that, as of v0.7.0, the meaning of the -k parameter has changed slightly.
Rather than the k-mer size on which Sailfish will quantify abundances, it becomes
the minimum match size that will be considered in the quasi-mapping [http://github.com/COMBINE-lab/RapMap]
procedure during quantification. For sufficiently long (e.g. 75bp or greater)
reads, the default should be acceptable. If you have substantially shorter
reads, you may want to consider a smaller -k.

Note

values of k

The k value used to build the Sailfish index must be an odd number. Using an
even value for k will raise an error and the full index will not be built.

Quantification

Now that you have generated the sailfish index (say that it’s the directory
<index_dir> — this corresponds to the <out_dir> argument provided in the
previous step), you can quantify the transcript expression for a given set of
reads. To perform the quantification, you run a command like the following:

> sailfish quant -i <index_dir> -l "<libtype>" {-r <unmated> | -1 <mates1> -2 <mates2>} -o <quant_dir>

Where <index_dir> is, as described above, the location of the sailfish
index, <libtype> is a string describing the format of the fragment (read)
library (see Fragment Library Types), <unmated> is a list of files
containing unmated reads, <mates{1,2}> are lists of files containg,
respectively, the first and second mates of paired-end reads. Finally,
<quant_dir> is the directory where the output should be written. Just like the
indexing step, additional options are available, and can be viewed by running
sailfish quant -h.

When the quantification step is finished, the directory <quant_dir> will
contain a file named “quant.sf” (and, if bias correction is enabled, an
additional file names “quant_bias_corrected.sf”). This file contains the
result of the Sailfish quantification step. This file contains a number of
columns (which are listed in the last of the header lines beginning with ‘#’).
Specifically, the columns are (1) Transcript ID, (2) Transcript Length, (3)
Transcripts per Million (TPM) and (6) Estimated number of reads (an estimate
of the number of reads drawn from this transcript given the transcript’s
relative abundance and length). The first two columns are self-explanatory,
the next four are measures of transcript abundance and the final is a commonly
used input for differential expression tools. The Transcripts per Million
quantification number is computed as described in [1], and is meant as an
estimate of the number of transcripts, per million observed transcripts,
originating from each isoform. Its benefit over the F/RPKM measure is that it
is independent of the mean expressed transcript length (i.e. if the mean
expressed transcript length varies between samples, for example, this alone can
affect differential analysis based on the K/RPKM.).

Description of important options

Sailfish exposes a number of useful optional command-line parameters to the user.
The particularly important ones are explained here, but you can always run
sailfish quant -h to see them all.

-p / --numThreads

The number of threads that will be used for quasi-mapping, quantification, and
bootstrapping / posterior sampling (if enabled). Sailfish is designed to work
well with many threads, so, if you have a sufficient number of processors, larger
values here can speed up the run substantially.

--useVBOpt

Use the variational Bayesian EM algorithm rather than the “standard” EM algorithm
to optimize abundance estimates. The details of the VBEM algorithm can be found
in [2], and the details of the variant over fragment equivalence classes that
we use can be found in [3]. While both the standard EM and the VBEM produce
accurate abundance estimates, those produced by the VBEM seem, generally, to be
a bit more accurate. Further, the VBEM tends to converge after fewer iterations,
so it may result in a shorter runtime; especially if you are computing many
bootstrap samples.

--numBootstraps

Sailfish has the ability to optionally compute bootstrapped abundance estimates.
This is done by resampling (with replacement) from the counts assigned to
the fragment equivalence classes, and then re-running the optimization procedure,
either the EM or VBEM, for each such sample. The values of these different
bootstraps allows us to assess technical variance in the main abundance estimates
we produce. Such estimates can be useful for downstream (e.g. differential
expression) tools that can make use of such uncertainty estimates. This option
takes a positive integer that dictates the number of bootstrap samples to compute.
The more samples computed, the better the estimates of varaiance, but the
more computation (and time) required.

--numGibbsSamples

Just as with the bootstrap procedure above, this option produces samples that allow
us to estimate the variance in abundance estimates. However, in this case the
samples are generated using posterior Gibbs sampling over the fragment equivalence
classes rather than bootstrapping. We are currently analyzing these different approaches
to assess the potential trade-offs in time / accuracy. The --numBootstraps and
--numGibbsSamples options are mutually exclusive (i.e. in a given run, you must
set at most one of these options to a positive integer.)

References

	[1]	Li, Bo, et al. “RNA-Seq gene expression estimation with read mapping uncertainty.”
Bioinformatics 26.4 (2010): 493-500.

	[2]	Nariai, Naoki, et al. “TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference.”
Bioinformatics (2013): btt381.

	[3]	Rob Patro, Geet Duggal & Carl Kingsford “Accurate, fast, and model-aware transcript expression quantification with Salmon”
bioRxiv doi: http://dx.doi.org/10.1101/021592

 Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Sailfish 0.7.6 documentation

Fragment Library Types

There are numerous library preparation protocols for RNA-seq that result in
sequencing reads with different characteristics. For example, reads can be
single end (only one side of a fragment is recorded as a read) or paired-end
(reads are generated from both ends of a fragment). Further, the sequencing
reads themselves may be unstraned or strand-specific. Finally, paired-end
protocols will have a specified relative orientation. To characterize the
various different typs of sequencing libraries, we’ve created a miniature
“language” that allows for the succinct description of the many different types
of possible fragment libraries. For paired-end reads, the possible
orientations, along with a graphical description of what they mean, are
illustrated below:

[image: _images/ReadLibraryIllustration.png]
The library type string consists of three parts: the relative orientation of
the reads, the strandedness of the library, and the directionality of the
reads.

The first part of the library string (relative orientation) is only provided if
the library is paired-end. The possible options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is
stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library
string specifies the strand from which the read originates in a strand-specific
protocol — it is only provided if the library is stranded (i.e. if the
library format string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

So, for example, if you wanted to specify a fragment library of strand-specific
paired-end reads, oriented toward each other, where read 1 comes from the
forward strand and read 2 comes from the reverse strand, you would specify -l
ISF on the command line. This designates that the library being processed has
the type “ISF” meaning, Inward (the relative orientation), Stranted
(the protocol is strand-specific), Forward (read 1 comes from the forward
strand).

The single end library strings are a bit simpler than their pair-end counter
parts, since there is no relative orientation of which to speak. Thus, the
only possible library format types for single-end reads are U (for
unstranded), SF (for strand-specific reads coming from the forward strand)
and SR (for strand-specific reads coming from the reverse strand).

A few more examples of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
 read1 comes from reverse strand and read2 comes from the forward strand)

Note

Correspondence to TopHat library types

The popular TopHat [http://ccb.jhu.edu/software/tophat/index.shtml] RNA-seq
read aligner has a different convention for specifying the format of the library.
Below is a table that provides the corresponding sailfish/salmon library format
string for each of the potential TopHat library types:

	TopHat
	Salmon (and Sailfish)

	
	Paired-end
	Single-end

	-fr-unstranded
	-l IU
	-l U

	-fr-firststrand
	-l ISR
	-l SR

	-fr-secondstrand
	-l ISF
	-l SF

The remaining salmon library format strings are not directly expressible in terms
of the TopHat library types, and so there is no direct mapping for them.

 Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Sailfish 0.7.6 documentation

Index

 Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

 _static/comment.png

search.html

 Navigation

 		
 index

 		Sailfish 0.7.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

_static/down-pressed.png

_static/up.png

_static/down.png

license.html

 Navigation

 		
 index

 		Sailfish 0.7.6 documentation »

License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

 © Copyright 2014/2015, Rob Patro, Carl Kingsford and Steve Mount.
 Created using Sphinx 1.3.4.

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_images/ReadLibraryIllustration.png
~~ S~

~ N

~~ S~

ISF

ISR

<

<

O

O

MU

ou

Sequencing read

Start of End of
FASTA/Qread FASTA/Q read

_static/comment-close.png

